Муниципальное учреждение дополнительного образования «Центр внешкольной работы»

Рассмотрена на заседании методического совета МУДО ЦВР Протокол № 10 от 11.05.2023

Утверждаю Директор МУДО ЦВР А.С. Девальд Приказ от 11.05.2023 № 253

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Робототехника для детей с ОВЗ» (адаптированная для учащихся с ограниченными возможностями здоровья) (с изменениями и дополнениями)

Возраст учащихся: 10-12 лет Срок реализации программы: 1 год

Автор-составитель: Вершинина Светлана Викторовна, педагог дополнительного образования

г. Оленегорск 2023 год

Пояснительная записка

Область применения программы

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Робототехника для детей с ОВЗ» (далее - программа) направлена на формирование у учащихся с ОВЗ компетенций в области освоения научных знаний и развитие интереса к инженерным профессиям через проектную деятельность.

В рамках данной программы учащиеся приобретают начальные технические знания, необходимые для работы с современными наборами робототехники. При работе с ними учащиеся знакомятся с возможностями работы на высокотехнологичном оборудовании, принципами его работы и областями применения.

Программа разработана в соответствии с основными нормативными документами:

- Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказом Министерства просвещения Российской Федерации от 27.07.2022 № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ» (письмо Министерства и науки Российской Федерации от 18.11.2015 № 09-3242);
- письмом Министерства образования и науки РФ от 25.07.2016 № 09-1790 «Рекомендации совершенствованию ПО дополнительных образовательных программ, созданию детских технопарков, центров молодежного инновационного творчества и внедрению иных подготовки детей и молодежи по программам инженерной направленности»;
- Концепцией развития дополнительного образования детей до 2030 года (распоряжение Правительства Российской Федерации от 31.03.2022 г. № 678-р);
- «Стратегией развития воспитания в Российской Федерации на период до 2025 года» (распоряжение Правительства Российской Федерации от 29.05.2015 г. № 996-р);
- требованиями и нормами СанПиН 2.4.3648-20, 1.2.3685-21 и другими законодательными актами Российской Федерации.

Актуальность программы и новизна

Данная программа рассчитана на детей с задержкой психического развития и учитывает их особенности. Эти дети отстают от сверстников и быстро утомляются при выполнении монотонной работы. Эмоционально они более чувствительны и обидчивы.

Программа разработана для того, чтобы позволить детям с задержкой психического развития работать наравне со сверстниками и взрослыми и развить самосознание ребенка как полноценного и значимого члена

общества.

Педагогическая целесообразность программы обусловлена необходимостью развития конструкторских способностей у детей в сфере научно- технического творчества; необходимостью формирования профессиональной ориентации учащихся в сфере проектирования и производства робототехники.

Цель программы - создать предпосылки к изучению законов моделирования, программирования и тестирования LEGO-роботов с помощью современных средств и методов обучения.

Задачи:

Обучающие:

- изучать принципы работы робототехнических элементов, состояние и перспективы робототехники в настоящее время;
 - осваивать «hard» и «soft» компетенции;
- обучать владению технической терминологией, технической грамотности;
 - формировать умение пользоваться технической литературой;
 - формировать целостную научную картину мира;
- изучать приемы и технологии разработки простейших алгоритмов и систем управления, машинного обучения, технических устройств и объектов управления.

Развивающие:

- формировать интерес к техническим знаниям; развивать у учащихся техническое мышление, изобретательность, образное, пространственное и критическое мышление;
- формировать учебную мотивацию и мотивацию к творческому поиску;
- развивать волю, терпение, самоконтроль, внимание, память фантазию;
- развивать способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- стимулировать познавательную активность учащихся посредством включения их в различные виды конкурсной деятельности.

Воспитательные:

- воспитывать дисциплинированность, ответственность, самоорганизацию;
 - формировать организаторские качества;
 - воспитывать трудолюбие, уважение к труду;
 - формировать чувство коллективизма и взаимопомощи;
- воспитывать чувство патриотизма, гражданственности, гордости за достижения отечественной науки и техники.

Направленность программы: техническая.

Уровень программы: стартовый.

Возраст учащихся, участвующих в реализации программы: 10-12

Форма реализации программы – очная.

Срок реализации программы (модуля): 1 год.

Объем программы: 72 часа.

Количество учащихся в группе: 6 человек.

Форма организации занятий — групповая, при работе над проектам-групповая, парная.

Режим занятий: 1 раз в неделю по 2 часа.

Виды учебных занятий и работ: практические работы, беседы, лекции, тестирование. Групповые оптимально конкурсы, выставки, занятия чередуются \mathbf{c} занятиями ПО звеньям И индивидуальной работой. Теоретические занятия проводятся индивидуально и со всей группой, практические - по звеньям, состоящим из 2-3 обучающихся.

Ожидаемые результаты

Предметные результаты:

В результате освоения программы учащиеся должны

знать:

- конструктивные особенности и основные приемы конструирования различных моделей роботов, компьютерной среды, включающей в себя графический язык программирования LEGO Education SPIKE Prime;
- приемы конструирования с использованием специальных элементов идругих объектов и т.д.;

уметь:

- разрабатывать и корректировать программы на компьютере для различных роботов;
- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме;
 - демонстрировать технические возможности роботов;

иметь:

- опыт конструирования с использованием специальных элементов и других объектов и т.д.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

уметь:

- принимать и сохранять учебную задачу;
- адекватно воспринимать оценку педагога и сверстников;
- проявлять познавательную инициативу в учебном сотрудничестве;
- осваивать способы решения проблем творческого характера в жизненных ситуациях

Познавательные универсальные учебные действия:

уметь:

- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
 - проводить сравнение, классификацию по заданным критериям;
 - синтезировать, составлять целое из частей.

Коммуникативные универсальные учебные действия:

уметь:

- выслушивать собеседника и вести диалог;

планировать учебное сотрудничество с учителем и сверстниками: определять цели, функции участников, способов взаимодействия.

Личностные результаты:

- воспитание коммуникативных качеств посредством творческого общения учащихся в группе, готовности к сотрудничеству, взаимопомощи и дружбе;
- воспитание трудолюбия, аккуратности, ответственного отношения к осуществляемой деятельности;
 - формирование уважительного отношения к труду;
 - развитие целеустремленности и настойчивости в достижении целей.

Формы итоговой диагностики:

- демонстрация решений кейса на внутренних и внешних уровнях;
- участие в конкурсах, выставках, соревнованиях в соответствии с профилем обучения.

Показатели результативности программы

По окончанию обучения по программе учащиеся должны самостоятельно конструировать и программировать модель. Показателем результативности обучения являются готовые модели учащихся.

Учебный план

№п/п	Название раздела, темы	Колич	ество ча	СОВ	Формы аттестации/	
		всего	теория	практика	контроля	
1.	Вводное занятие	2	2		беседа, опрос, зачет	
2.	Основы конструирования	6	2	4	опрос	
3.	Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime	10	2	8	опрос, самостоятельная работа	
	Основы управления роботом	16	2	14	самостоятельная работа, демонстрация движущейся модели	

	#11010.	12	10	30	
	Итого:	72	16	56	
9.	Итоговое занятие	2		2	подведениеитогов, защита проекта
8.	Турнир/соревнование роботов	4	-	4	соревнование
7.	Блоки расширения	4	2	2	соревнование самостоятельная работа
6.	Творческие проекты	10	2	8	беседа, наблюдение, самостоятельная работа, демонстрация движущейся модели,
5.	Состязания роботов. Игры роботов	18	4	14	наблюдение, самостоятельная работа, демонстрация движущейся модели, соревнование

Содержание учебного плана

Вводное занятие- 2часа

Теория: Информатика, кибернетика, робототехника. Инструктаж по ТБ.

Тема 1. Основы конструирования-6 часов

Теория: Простейшие механизмы. Хватательный механизм. Принципы крепления деталей. Рычаг. Виды механической передачи: зубчатая, прямая, коническая, червячная. Передаточное отношение. Ременная передача, блок. Понижающая Повышающая передача. Волчок. передача. Редуктор. Осевой редуктор заданным «крутилка». c передаточным отношением. Колесо, ось. Центр тяжести.

Практика: Решение практических задач. Строительство высокой башни. Измерения.

Tema 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime-10 часов

Теория: Знакомство с контроллером **Smart hub**. Встроенные программы. Датчики. Среда программирования Scratch. Стандартные конструкции роботов. Колесные, гусеничные и шагающие роботы. Следование по линии. Путешествие по комнате. Поиск выхода из лабиринта.

Практика: Решение простейших задач. Цикл, Ветвление, параллельные задачи. Кегельринг.

Тема 3. Основы управления роботом-16 часов

Теория: Релейный и пропорциональный регуляторы. Эффективные конструкторские и программные решения классических задач. Эффективные методы программирования: регуляторы, защита от застреваний, траектория с перекрестками, события, пересеченная местность. Обход лабиринта по правилу правой руки. Синхронное управление двигателями.

Практика: параллельные задачи, подпрограммы, контейнеры и пр. Анализ показаний разнородных датчиков. Робот-барабанщик.

Тема 4. Состязания роботов. Игры роботов-18 часов

Теория: Футбол с инфракрасным мячом (основы). Использование микроконтроллера Smart hub.

Практика: Боулинг, футбол, баскетбол, командные игры с использованием инфракрасного мяча и других вспомогательных устройств. Использование удаленного управления. Проведение состязаний, популяризация новых видов робото-спорта. «Царь горы». Управляемый футбол роботов. Теннис роботов.

Подготовка команд для участия в состязаниях (Сумо. Перетягивание каната. Кегельринг. Следование по линии. Слалом. Лабиринт). Регулярные поездки.

Тема 5. Творческие проекты-10 часов

Теория: Одиночные и групповые проекты.

Практика: Разработка творческих проектов на свободную тему. Роботы - помощники человека. Роботы - артисты.

Тема 6. Блоки расширения-4 часа

Теория: Создание своих блоков (подпрограмм). Блоки расширения «Погода» (интернет вещей), дополнительные блоки «Движения, Моторы, Музыка».

Практика: Решение практических задач.

Тема 7. Турнир/соревнование роботов-4 часа

Практика: Организация и проведение турнира/соревнования.

Итоговое занятие-2 часа

Практика:

Итоговая диагностика. Обсуждение работы объединения за учебный год.

Демонстрация изготовленных конструкций.

Материально-техническое обеспечение

- кабинет, оснащенный компьютерной техникой, не менее 1 ПК на 2учащихся;
 - наборы конструкторов LEGO Education SPIKE Prime 6 комплектов;
 - дополнительные наборы датчиков.

Методическое обеспечение программы

Учебно-методические средства обучения:

- специализированная литература по направлению, подборка журналов;
 - наборы технической документации к применяемому оборудованию;
 - образцы моделей и систем, выполненные учащимися и педагогом;
 - плакаты, фото и видеоматериалы;
- учебно-методические пособия для педагога и учащихся, включающие дидактический, информационный, справочный материалы на различных носителях, компьютерное и видео оборудование.

Применяемое на занятиях дидактическое и учебно-методическое обеспечение включает в себя электронные пособия, справочные материалы, программное обеспечение, используемое для обеспечения учебной и проектной деятельности, ресурсы сети Интернет.

Диагностика результативности образовательного процесса

В течение всего периода реализации программы по определению уровня ее усвоения учащимися, осуществляются диагностические срезы:

- 1. Входной контроль посредством бесед, анкетирования, тестов, где выясняется начальный уровень знаний, умений и навыков учащихся, а также выявляются их творческие способности. Входной контроль может проводиться в следующих формах: творческие работы, самостоятельные работы, вопросники, тестирование и пр.
- 2. Промежуточный контроль позволяет выявить достигнутый на данном этапе уровень ЗУН учащихся, в соответствии с пройденным материалом программы. Проводятся контрольные тесты, опросы, беседы, выполнение практических заданий.
 - 3. Итоговый контроль проводится по окончании программы и

предполагает комплексную проверку образовательных результатов по всем ключевым направлениям. Данный контроль позволяет проанализировать степень усвоения программы учащимися. Результаты контроля фиксируются в диагностической карте.

Критерии оценки результатов диагностики учащихся

Общими критериями оценки результативности обучения являются:

- оценка уровня теоретических знаний: широта кругозора, свобода восприятия теоретической информации, развитость практических навыков работы со специальной литературой, осмысленность и свобода использования специальной терминологии;
- оценка уровня практической подготовки учащихся: соответствие развития уровня практических умений и навыков программным требованиям, свобода владения специальным оборудованием и оснащением, качество выполнения практического задания, технологичность практической деятельности;
- оценка уровня развития и воспитанности обучающихся: культура организации самостоятельной деятельности, аккуратность и ответственность при работе, развитость специальных способностей, умение взаимодействовать с членами коллектива.

Возможные уровни теоретической подготовки учащихся:

<u>Высокий уровень</u> — учащийся освоил практически весь объем знаний (80- 100%), предусмотренных программой за конкретный период; специальные термины употребляет осознанно и в полном соответствии с их содержанием.

<u>Средний уровень</u> – у учащегося объем освоенных знаний составляет 50-79%; сочетает специальную терминологию с бытовой.

<u>Низкий уровень</u> — учащийся овладел менее чем 50% объема знаний, предусмотренных программой; учащийся, как правило, избегает употреблять специальные термины.

Возможные уровни практической подготовки учащихся:

<u>Высокий уровень</u> — учащийся овладел 80-100% умениями и навыками, предусмотренными программой за конкретный период; работает с оборудованием самостоятельно, не испытывает особых трудностей; выполняет практические задания с элементами творчества.

<u>Средний уровень</u> – у учащегося объем усвоенных умений и навыков составляет 50-79%; работает с оборудованием с помощью педагога; в основном выполняет задания на основе образца.

<u>Низкий уровень</u> — учащийся овладел менее чем 50% умений и навыков, предусмотренных программой; испытывает затруднения при работе с оборудованием; обучающийся в состоянии выполнять лишь простейшие практические задания педагога.

- В целях определения уровня усвоения программы учащимися осуществляются диагностические срезы:
- входная диагностика на основе анализа выбранной обучающимися роли в диагностической игре и степени их участия в реализации отдельных

ее этапов, где выясняется начальный уровень знаний, умений и навыков учащихся, а также выявляются их творческие способности;

- промежуточная диагностика позволяет выявить достигнутый на данном этапе уровень знаний, умений и навыков учащихся, в соответствии с реализованной проектной деятельностью. Предлагаются выполнение практических заданий, контрольные тесты;
- итоговая диагностика проводится в конце учебного курса (выставка и защита творческих проектов) и предполагает комплексную проверку образовательных результатов по всем ключевым направлениям. Данный контроль позволяет проанализировать степень усвоения программы учащимися.

Достигнутые учащимся знания, умения и навыки заносятся в сводную таблицу результатов обучения.

Сводная таблица результатов обучения по модулю по образовательной программе дополнительного образования детей

№п/п	Теоретичес кие знания	۲	Творчески способнос	e	Воспитатель ные результаты	Итого
1.						
2.						
3.						

Формы подведения итогов реализации дополнительной программы: участие во внутренних мероприятиях мини-технопарка, муниципальных и областных мероприятиях, защита проекта и создание прототипа или групповые соревнования.

Достигнутые учащимся знания, умения и навыки заносятся в сводную таблицу результатов обучения.

Список литературы для педагогов

- 1. Белиовская Л.Г. / Белиовский Н.А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход ДМК Пресс, 2016.
- 2. Власова О.С. Образовательная робототехника в учебной деятельностиучащихся начальной школы. Челябинск, 2014.
- 3. Мирошина Т.Ф. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие. Челябинск: Взгляд, 2011.
- 4. Никулин С.К., Полтавец Г.А., Полтавец Т.Г. Содержание научнотехнического творчества учащихся и методы обучения. М.: Изд. МАИ. 2004.
- 5. Перфильева Л.П. Образовательная робототехника во внеурочной учебнойдеятельности: учебно-методическое. Челябинск: Взгляд, 2011.
- 6. Полтавец Г.А., Никулин С.К., Ловецкий Г.И., Полтавец Т.Г. Системный подход к научно-техническому творчеству учащихся (проблемы организации и управления). УМП. М.: Издательство МАИ. 2003.

Список Интернет-источников

1. Poбот LEGO MINDSTORMS EV3 и NXT инструкции [Электронный ресурс]//Режим доступа: https://education.lego.com/ru-ru/lessons. _ (Дата обращения: 10.05.2022).

Список литературы для учащихся

- 1. Белиовская Л.Г. Узнайте, как программировать на LabVIEW. ДМК Пресс, 2014.
- 2. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2013. 319 с.

Программу составила педагог ДО МУДО ЦВР

С.В. Вершинина

Приложение

Календарный учебный график к дополнительной общеобразовательной общеразвивающей программе «Робототехника для детей с ОВЗ»

№п/п			Время		Количество	оощеразвивающей программе «гооототехник	au gun geren e obo	
	Месяц	Число	проведения занятия	1 opuom.bb.	часов	Тема занятия	Место проведения	Форма контроля
1.	сентябрь		по расписанию	беседа, видео презентация, практическое занятие		MADOTLI	Квантолаб Ферсмана,15	беседа,опрос, зачет опрос
Тема 1	. Основы ко	онструир	ования	•				
2.	сентябрь		по расписанию	беседа, видео презентация, практическое занятие		Тема 1. Основы конструирования Проект. Этапы создания проекта. Оформление, демонстрация проекта	Квантолаб Ферсмана,15	опрос
3.	сентябрь		по расписанию	беседа, практическое занятие	2	Тема 1. Основы конструирования Ознакомление с визуальной средой программирования Scratch. Интерфейс. Основные блоки. Демонстрация СП	Квантолаб Ферсмана,15	опрос
	сентябрь		по расписанию	беседа, практическое занятие		блоки. Демонстрация СП	Квантолаб Ферсмана,15	опрос
Тема 2	. Введение і	в роботот	гехнику. Знако	омство с роботам	и LEGO Edu	ication SPIKE Prime		
				беседа, практическое занятие	2	Тема 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime Обзор модуля Smart hub. Экран, кнопки управления, индикатор состояния, порты.		опрос

5.	октябрь	по расписанию			, · · · · · · · · · · · · · · · · · · ·	Квантолаб Ферсмана,15	самостоятельная работа
6.	октябрь	по расписанию	беседа, практическое занятие	2	Тема 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime Обзор модуля Smart hub. Экран, кнопки управления, индикатор состояния, порты. Демонстрация модуля Обзор сервомоторов, их характеристика. Сравнение основных показателей (обороты вминуту, крутящий момент, точность)	Квантолаб Ферсмана,15	опрос
7.	октябрь	по расписанию	беседа, практическое занятие	2	Тема 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime Обзор сервомоторов EV3, их характеристика. Сравнение основных показателей (обороты в минуту кругдина момент тонность)	Квантолаб	опрос самостоятельная работа
8.	октябрь	по расписанию	беседа, практическое занятие	2	Тема 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime Сборка модели робота по инструкции. Демонстрация конструктора Обзор датчика касания. Устройство, режимы работы. Демонстрация датчика	T.C.	самостоятельная работа
9.	ноябрь	по расписанию	беседа, практическое занятие	2	Тема 2. Введение в робототехнику. Знакомство с роботами LEGO Education SPIKE Prime Обзор датчика касания. Устройство, режимы работы. Демонстрациядатчика	Квантолаб Ферсмана,15	самостоятельная работа
Тема :	3. Основы управлен	ия роботом					
10.	ноябрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Обзор гироскопического датчика. Устройство, режимы работы. Демонстрация датчика	Квантолаб Ферсмана,15	самостоятельная работа

11.	ноябрь	по расписанию	беседа, практическое занятие	2	IDAOOTSI /TEMOHCTDAITUS/JATSUKS/CJOSOD		самостоятельная работа
12.	ноябрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Обзор датчика света. Устройство, режимы работы. Демонстрация датчика	Квантолаб Ферсмана,15	самостоятельная работа
13.	декабрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Обзор ультразвукового датчика. Устройство, режимы	Квантолаб	самостоятельная работа
14.	декабрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Проверочная работа на тему: «Характеристики и режимы работы активных компонентов». Демонстрация датчика Движения по прямой траектории Лемонстрация робота	Квантолаб Ферсмана,15	проверочная работа самостоятельная работа, демонстрация движущейся модели
15.	декабрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Движения по прямой траектории. Демонстрацияробота	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели
16.	декабрь	по расписанию	беседа, практическое занятие	2	Тема 3. Основы управления роботом Точные повороты. Демонстрация робота	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели
	январь	по расписанию ботов. Игры робо	беседа, практическое занятие	2	V 1	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели

18.	январь	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Движения по кривой траектории. Расчёт длинны пути для каждого колеса при повороте с заданным радиусом и углом. Демонстрация робота		самостоятельная работа, демонстрация движущейся модели
19.	январь	по расписанию	беседа, соревнование	2	Тема 4. Состязания роботов. Игры роботов Игра «Весёлые старты». Зачет времени и количества ошибок. Демонстрация робота	Квантолаб Ферсмана,15	соревнование, наблюдение
20.	февраль	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Захват и освобождение «Кубойда». Механикамеханизмов и машин. Виды соединений и передач и их свойства. Демонстрация робота		самостоятельная работа, демонстрация движущейся модели
21.	февраль	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Решение задач на движение с использованием датчика касания. Демонстрация робота	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели
22.	февраль	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Решение задач на движение с использованием датчика света. Изучение влияния цвета на освещенность. Демонстрация робота	-	самостоятельная работа, демонстрация движущейся модели
23.	февраль	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Решение задач на движение с использованием гироскопического датчика. Демонстрация робота Решение задач на движение с использованием ультразвукового датчика расстояния.	V рантонаб	самостоятельная работа, демонстрация движущейся модели

24.	март	по расписанию	беседа, практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Решение задач на движение с использованием ультразвукового датчика расстояния. Демонстрация робота Программирование с помощью интерфейса модуля. Контрольный проект на тему: «Разработка сценария движения с использованием нескольких датчиков».	Квантолаб Ферсмана,15	Самостоятельная работа, демонстрация движущейся модели
25.	март	по расписанию	беседа, соревнование практическое занятие	2	Тема 4. Состязания роботов. Игры роботов Битва роботов Многозадачность. Понятие параллельного программирования. Демонстрация СП, робота	Квантолаб Ферсмана,15	соревнование, наблюдение самостоятельная работа, демонстрация движущейся модели
26.	март	по расписанию	беседа, практическое занятие	2	Chapter Manager Divore in interest	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели
1 CMa 3	. творческие	проскты		1			
27.	март	по расписанию	беседа, практическое занятие	2	Тема 5. Творческие проекты Оператор выбора (переключатель). Условия выбора. Демонстрация СП, робота Многопозиционный переключатель.	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели
28.	апрель	по расписанию	беседа, практическое занятие	2	Тема 5. Творческие проекты Многопозиционный переключатель. Условия выбора. Демонстрация СП, робота	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация движущейся модели

29.	апрель	по расписаниі	беседа 2	Тема 5. Творческие проекты Динамическу управление. Демонстрация СП, робота Бигроботов		самостоятельная работа, демонстрация движущейся модели соревнование, наблюдение
30.	апрель	по расписаниі	беседа, видео 2 презентация	Тема 5. Творческие проекты Правила соревнований. Работа над проектами «Движение по заданной траектории», «Кегельринг». Соревнование роботов на тестов поле	Квантолаб Ферсмана,15 ом	беседа, соревнование, наблюдение
31.	апрель	по расписаниі	беседа, видео2 презентация	Тема 5. Творческие проекты Измереносвещенности. Определение цветов. Распознаван цветов. Использование конструктора Lego качестве цифровой лаборатории		самостоятельная работа, демонстрация движущейся модели
Тема 6	б. Блоки расп	ширения				
32.	апрель	по расписаниі	беседа, видео 2 презентация	Тема 6. Блоки расширения Создание своих блоков (подпрограмм) Бло расширения «Погода» (интернет вещей))	киКвантолаб Ферсмана,15	самостоятельная работа, демонстрация модели
33.	май	по расписаниі	беседа, видео2 презентация	Тема б. Блоки расширения Дополнительные блоки «Движения», «Моторы», «Музыка»	Квантолаб Ферсмана,15	самостоятельная работа, демонстрация модели
Тема 7	7. Турнир/сој	ревнование робото	В			
34.	май	по расписани	ню беседа, 2 практическое занятие	Тема 7. Турнир/соревнование роботов Подготовка роботов к соревнованиям	Квантолаб Ферсмана,15	самостоятельная работа
35.	май	по расписаниі	беседа, практическое 2 занятие	Тема 7. Турнир/соревнование роботов Подготовка роботов к соревнованиям	Квантолаб Ферсмана,15	самостоятельная работа

36.	май	по расписанию	конференция	2	Итоговое занятие Защита проекта «Мой собственный уникальный робот»	подведениеитогов, защита проекта
Итого				72		